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Abstract
Homocysteine is a metabolic intermediate in methyl group metabolism that is dependent on a number of
nutritional B-vitamin cofactors. An emerging aspect of homocysteine metabolism is its relation to health and
disease. Perturbations of homocysteine metabolism, particularly intracellular and subsequently circulating
accumulation of homocysteine (i.e., hyperhomocysteinemia), are associated with vascular disease risk, as well
as other pathologies. However, intervention with B-vitamin supplementation has been shown to successfully
restore normal homocysteine concentrations, but without concomitant reductions in disease risk. Thus, the
mechanistic relation between homocysteine balance and disease states, as well as the value of homocysteine
management, remains an area of intense investigation.

Keywords
homocysteine; hyperhomocysteinemia; methyl group metabolism; folate

Disciplines
Food Chemistry | Food Science | Human and Clinical Nutrition | Other Food Science

Comments
This is the peer reviewed version of the following article from Biofactors, 2010 36(1); 19-24, which has been
published in final form at Doi: 10.1002/biof.71. This article may be used for non-commercial purposes in
accordance With Wiley Terms and Conditions for self-archiving.

This article is available at Iowa State University Digital Repository: https://lib.dr.iastate.edu/fshn_hs_pubs/10

http://dx.doi.org/10.1002/biof.71
https://lib.dr.iastate.edu/fshn_hs_pubs/10?utm_source=lib.dr.iastate.edu%2Ffshn_hs_pubs%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages


www.manaraa.com

   
   

1 
 

 

 

 

 

Homocysteine Metabolism and its Relation to Health and Disease 

 

Kelly T. Williams and Kevin L. Schalinske 

 

Department of Food Science and Human Nutrition 

Iowa State University 

Ames, IA  50011 

 

 

 

Running title:  Regulation of homocysteine balance 

 

 



www.manaraa.com

   
   

2 
 

Abstract/ Summary 

 Homocysteine is a metabolic intermediate in methyl group metabolism that is 

dependent on a number of nutritional B-vitamin cofactors.  An emerging aspect of 

homocysteine metabolism is its relation to health and disease.  Perturbations of 

homocysteine metabolism, particularly intracellular and subsequently circulating 

accumulation of homocysteine (i.e., hyperhomocysteinemia), are associated with vascular 

disease risk, as well as other pathologies.  However, intervention with B-vitamin 

supplementation has been shown to successfully restore normal homocysteine 

concentrations, but without concomitant reductions in disease risk.  Thus, the mechanistic 

relation between homocysteine balance and disease states, as well as the value of 

homocysteine management, remains an area of intense investigation. 

 

Key Words:  homocysteine; hyperhomocysteinemia; methyl group metabolism; folate 
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Introduction 

 Homocysteine is an amino acid generated metabolically by the S-

adenosylmethionine (SAM)-dependent transmethylation pathway (1).  This series of 

reaction occurs in most cells and tissues; however, the liver is the most prominent site for 

SAM-dependent transmethylation and the subsequent production of homocysteine.  As 

shown in Fig. 1, the initial step is the activation of methionine to SAM by the ATP-

dependent action of methionine adenosyltransferase.  SAM is the universal methyl donor 

for numerous transmethylation reactions, including the methylation of proteins, nucleic 

acids, lipids, and small molecule substrates such as amino acids.  A consequence of all 

SAM-dependent transmethylation reactions is the subsequent generation of S-

adenosylhomocysteine (SAH), which is then hydrolyzed to adenosine and homocysteine 

by SAH hydrolase.  It is important to note that the intracellular concentrations of SAM and 

SAH are critically important with respect to regulating methylation reactions, as SAH is an 

allosteric inhibitor of most methyltransferases (2).  Thus, the ratio of SAM/SAH can be 

viewed as an index of transmethylation potential in the cell (3,4). 

 Following the production of homocysteine by SAM-dependent transmethylation, it 

can undergo remethylation back to methionine, or be irreversibly catabolized by the 

transsulfuration pathway.  Two tissue-specific homocysteine remethylation pathways are 

known to exist: a folate-dependent reaction that utilizes 5-methyltetrahydrofolate (5-CH3-

THF) as a substrate and the action of the B12-dependent enzyme methionine synthase 

(MS);  and a folate-independent route catalyzed by betaine-homocysteine S-

methyltransferase (BHMT) where betaine, an oxidation product of choline, serves as the 
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methyl donor.  Hepatic BHMT and MS are considered to contribute equally in the process 

of homocysteine remethylation in the liver (5).   For both reactions, the homocysteine 

backbone of methionine serves as an acceptor of methyl groups for the maintenance of 

essential SAM-dependent transmethylation reactions.  Transsulfuration is an alternative 

and essential route for homocysteine catabolism that is initiated by the action of 

cystathionine β-synthase (CBS), a B6-dependent enzyme, to form cystathionine via the 

condensation of homocysteine and serine.  Cystathionine is further metabolized by γ-

cystathionase to cysteine, a conditionally essential amino acid that, in addition to protein 

synthesis, is required for the synthesis of glutathione and other biologically important 

molecules such as taurine.  Thus, homocysteine balance is dependent on the numerous 

SAM-dependent transmethylation reactions that result in its production, counterbalanced 

with the utilization of homocysteine for folate-dependent/ -independent remethylation and/ 

or transsulfuration.  Some of the specific enzymes and regulatory proteins involved in 

homocysteine production and utilization are addressed further in the following sections. 

 

Homocysteine Production:  SAM-dependent Transmethylation and Regulation of 

Homocysteine Balance 

 As there are >100 SAM-dependent transmethylation reactions, all contributing to 

intracellular homocysteine pools, it is beyond the scope of this review to adequately 

address even the most critical reactions.  However, it is important to recognize and discuss 

the transmethylation reactions that are thought to contribute the greatest extent to 

homocysteine production, as well as have a potential regulatory role.  Collectively, the 
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hepatic production of phosphatidylcholine (PC) and creatine, catalyzed by the SAM-

dependent enzymes phosphatidylethanolamine N-methyltransferase (PEMT) and 

guanidinoacetate N-methyltransferase (GAMT), respectively, represent the greatest usage 

of methyl groups (~85%) from SAM (6,7); thus, the action of PEMT and GAMT are major 

determinants of homocysteine production.  The synthesis of PC is important in the 

maintenance of cell membranes and lipoproteins, and methylation of guanidinoacetate is 

the final step in the synthesis of creatine, a key molecule in energy metabolism as creatine 

phosphate.  Traditionally, GAMT was considered the most significant consumer of methyl 

groups from SAM; however, this hypothesis has been recently challenged, as the reaction 

catalyzed by PEMT requires 3 methyl groups from SAM in the conversion of 

phosphatidylethanolamine (PE) to PC (8,9).  

In addition to the specific reactions PEMT and GAMT function to catalyze, they 

have also been proposed to have a regulatory role with respect to homocysteine balance.  

For hepatic creatine synthesis, it has been shown that decreasing the demand for SAM-

dependent methylation of guanidinoacetate by GAMT via dietary supplementation with 

creatine resulted in a significant decrease in homocysteine concentrations (10).  

Conversely, the production of homocysteine was elevated owing to the dietary provision of 

guanidinoacetate.  Thus, the demand that creatine synthesis places on hepatic 

homocysteine production has a major impact on homocysteine balance, as reflected in the 

circulating concentrations of homocysteine. 

 SAM-dependent methylation of PE to generate PC is a vital component in the 

maintenance of normal VLD production such that when compromised, the result is hepatic 
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steatosis owing to an inability to export fatty acids from the liver (11).  In addition to 

lipoprotein synthesis, Vance and coworkers have shown that PEMT is a key regulator of 

homocysteine balance (12,13).  Using PEMT -/- knockout mice, the lack of PEMT 

expression significantly reduced the circulating concentrations of homocysteine, whereas 

its over-expression resulted in hyperhomocysteinemia.  Thus, the expression and activity 

of PEMT appears to be directly correlated to homocysteine accumulation.  

 A third key enzyme in SAM-dependent methyl group metabolism is glycine N-

methyltransferase (GNMT), a protein which regulates the supply and utilization of methyl 

groups, particularly with respect to methyl groups supplied by the folate-dependent 

pathway (14).  Owing to its significant intracellular abundance (1-2% of soluble cytosolic 

protein) and regulatory role in maintaining an optimal ratio of SAM: SAH, it would be 

expected that regulation of GNMT expression and function would translate into having a 

direct impact on homocysteine balance, similar to that exhibited by PEMT.  However, to 

date this has not been clearly demonstrated.  A GNMT knockout mouse model was 

characterized by extremely high levels of methionine and SAM in the circulation (15); 

however, plasma homocysteine concentrations were not reported.  Although over-

expression of GNMT might be expected to result in excessive production of homocysteine, 

various rodent models exhibiting a marked increase in GNMT abundance and activity did 

not translate into similar changes in the circulating concentrations of homocysteine (16-

19).  In fact, homocysteine concentrations were actually diminished in these studies, owing 

to the increased activity of other enzymes involved in homocysteine remethylation and 

catabolism.  
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Homocysteine Utilization:  Remethylation and Transsulfuration 

 Similar to the SAM-dependent transmethylation enzymes discussed earlier, 

enzymes involved in the metabolism of homocysteine, by either remethylation or 

transsulfuration, also have a significant impact on homocysteine balance.  Consequently, 

these three routes for homocysteine metabolism represent an additional point for its 

regulation. 

 For folate-dependent remethylation of homocysteine by the B12-dependent enzyme 

MS, much of the data regarding the impact of this pathway on homocysteine balance 

resides in studies focused on the polymorphic expression of the enzyme 5,10-

methylenetetrahydrofoalte reductase (MTHFR).  For humans, a reduction in the activity of 

MTHFR owing to the single nucleotide polymorphism C677T has been associated with 

hyperhomocysteinemia and vascular disease (20-22).  Similarly, MTHFR-deficient mice 

exhibited hyperhomocysteinemia, as well as indicators of neurological and vascular 

problems (23).  For all cases of reduced MTHFR function, the ensuing 

hyperhomocysteinemia can be attributed to the compromised ability of the folate/ B12-

dependent pathway to adequately remethylate homocysteine and is most pronounced under 

conditions of low folate intake.  Because the MTHFR C677T genotype represents a 

significant determinant in circulating homocysteine concentrations, its presence is also 

linked to the potential disease risks associated with hyperhomocysteinemia.  Moreover, a 

clear interaction exists between populations that exhibit the MTHFR C677T genotype in 



www.manaraa.com

   
   

8 
 

combination with polymorphisms of other enzymes involved in homocysteine balance, 

including the PEMT G5465A, the GNMT C1289Y, and the MS A66G genotypes (24-26).   

For folate-independent homocysteine remethylation using betaine as a methyl 

donor, BHMT has been shown to be a key regulator of homocysteine balance, particularly 

under diabetic conditions (16,17,27) and in response to dietary protein supply (28,29).  To 

date, a rodent BHMT knockout model has not been developed as a means to further 

understand the relation between BHMT expression and homocysteine balance.  However, 

the development of specific and potent inhibitors of BHMT has provided insight its role in 

regulating homocysteine metabolism.  Mice administered S-(δ-carboxybutyl)-DL-

homocysteine (CBHcy) as a means to knockdown BHMT function lowered BHMT activity 

nearly 90% and increased plasma total homocysteine concentrations 7-fold (30).  This 

relation between BHMT and circulating homocysteine concentrations appears to be highly 

specific, as CBHcy treatment was without effect on the enzymatic activities of MS, 

MTHFR, or PEMT (Garrow, T., personal communication). 

A key enzyme in the irreversible catabolism of homocysteine is CBS, the B6-

dependent enzyme that catalyzes the initial condensation of serine and homocysteine to 

form cystathionine.  The earliest evidence linking aberrant homocysteine metabolism (i.e., 

hyperhomocysteinemia) to cardiovascular disease results from the observations noted in 

humans exhibiting a lack of sufficient CBS expression, namely homocystinuria (31).  

Using a transgenic mouse model, Wang et al. (32) has demonstrated that induction of 

hepatic and renal CBS effectively lowered serum homocysteine concentrations.  In support 

of these observations, the inherent elevation of CBS expression in diabetic rat models was 
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associated with a state of hypohomocysteinemia, owing to elevated homocysteine 

catabolism via the transsulfuration pathway (33).  

In summary, a number of key enzymes involved in homocysteine metabolism play 

a pivotal role in homocysteine balance.  It should be noted that a variety of other factors 

impact the regulation and function of these enzymes, including diet, age, physiological 

state, and hormonal imbalance.  Moreover, and in addition to the MTHFR C677T 

polymorphisms, the majority of these enzyme proteins exhibit polymorphic forms that 

certainly have the potential to impact homocysteine balance for specific individuals, as has 

been discussed.  For humans, the most sensitive individuals for aberrant homocysteine 

metabolism are likely characterized by exhibiting multiple determinants.  

 

Hyperhomocysteinemia: relation between homocysteine balance and disease 

 Hyperhomocysteinemia, the accumulation of homocysteine in the circulation, has 

received considerable attention in the last decade with respect to a number of disease states 

in both animal models and human studies.  The predominant focus has been on 

hyperhomocysteinemia being recognized as an independent risk factor for cardiovascular 

disease (34,35).  It has been estimated that a 2.5 µM rise in circulating homocysteine 

concentrations translates into a 10% increase in cardiovascular disease risk.  This relation 

between homocysteine concentrations and cardiovascular disease risk has since been 

extended to include other vascular diseases as well (36).  Moreover, 

hyperhomocysteinemia has been reported to be a potential risk factor in a number of other 

pathologies, including diabetes, birth defects, neurological disorders, and  cancer 
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development (37-40).  A key issue that remains to be resolved is whether a condition of 

hyperhomocysteinemia has a direct, causal impact on vascular disease, or exists as a 

biomarker that reflects another mechanistic basis for the adverse effects on vascular 

function.  

 

Intervention studies to reduce elevations in homocysteine concentrations 

 Based on the preceding discussion, it is a logical approach to expect that dietary 

intervention to reduce circulating homocysteine concentrations represents a viable means 

to subsequently reduce cardiovascular disease risk.  There have been numerous 

investigations into the impact of homocysteine-lowering treatment with B vitamins for the 

prevention of vascular disease.  To date, most studies have demonstrated that treatment 

with folic acid, B12, B6 or a combination thereof results in a significant decrease in plasma 

homocysteine.  Whether this lowering of plasma homocysteine is associated with a 

reduction in the incidence of disease via B-vitamin therapies remains controversial (41,42).   

Near the turn of the century, the evidence from several trials suggested that B-

vitamin treatment could decrease the risk of vascular diseases, but subsequent 

investigations were not as promising.  Early studies showed improved B-vitamin status 

lowered plasma homocysteine levels, and decreased incidence of adverse events or 

improvements in indicators of vascular endothelial dysfunction in patients treated with 

folic acid, B12, and/or B6 vs. those treated with a placebo (43-47).  However, these results 

have largely been refuted by the predominantly negative results of subsequent trials, 

including the NORVIT, WENBIT, HOPE-2, VISP, VITATOPS, and VITRO studies (48-
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60).   These studies generally had a mean follow-up time of several years and assessed a 

wide variety of vascular indicators and endpoints including carotid intima-media thickness 

and flow-mediated dilation (52), markers of arterial inflammation (49-58), need for 

revascularization procedures (54), occurrence of thromboembolism (53,55), occurrence of 

stroke and myocardial infarction (48,50,54,56,57,59), as well as overall or 

coronary/vascular-related mortality (48,50,51,54,56,59).     

It is not clear as to what factors may account for the disparity in these findings.  

The duration of treatment, B-vitamin status, and polymorphisms of enzymes involved in 

homocysteine metabolism could potentially play a role.  Notably, the treatment period was 

generally longer in duration for the later studies in comparison to those conducted earlier, 

i.e. several years vs. weeks or months.  The apparent affect of the duration of treatment is 

supported by the meta-analysis by Potter et al (52) in which they found that in patients 

post-stroke, B-vitamin treatment had positive effects in the short term, but these effects 

were not sustained long term.  Research in this area is ongoing and several recent short 

term studies have demonstrated benefits of folate supplementation alone on vascular 

outcomes in high-risk patients (61-63).   Interestingly, the data suggests that improvements 

are independent of the homocysteine-lowering effect of treatment, therefore other 

mechanisms of action should also be considered for short-term treatment effects..  More 

data is also expected from additional long-term studies of high-risk populations which 

have been initiated, but are not yet complete (64,65).  Although poor B-vitamin status and 

polymorphisms of MTHFR have been associated with elevations in plasma homocysteine 

levels and may impact the homocysteine-lowering response to treatment, there is little or 
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no evidence to support that these factors may account for differential results between 

studies. 

Vascular diseases are not the only conditions in which there have been trials of B-vitamin 

interventions.   Unfortunately, there appears to be no effect of homocysteine-lowering B-

vitamin therapy on Alzheimer’s disease and cognitive decline (66-68) or type 2 diabetes 

(69), and the results are conflicting regarding potential effects on bone mineral density and 

turnover, and fracture occurrence (70-72).  However, not all findings have been negative; 

the Women’s Antioxidant and Folic Acid Cardiovascular Study found that long-term daily 

treatment with folic acid, pyridoxine, and cobalamin in a high-risk population reduced the 

risk of age-related macular degeneration (73).  Furthermore, studies in healthy individuals 

suggest that treatment with B vitamins may be an effective means of reducing the risk of 

stroke (74) and slowing the progression of early-stage atherosclerosis (75).   Though the 

data is limited, the most important research area for the future use of treatments with the 

homocysteine-lowering vitamins is the identification of which specific populations are 

most expected to benefit from therapy, with particular emphasis on primary prevention. 

 

Summary 

 Because of the association of hyperhomocysteinemia with a number of pathological 

conditions, particularly vascular disease, it is clear that homocysteine management 

represents a significant focus for nutrition and health.  Supplementation with the various 

B-vitamin cofactors that are essential to maintain homocysteine balance represents the 

most logical and viable approach.  However, much remains to be resolved to understand 
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the mechanistic relation between homocysteine imbalance and disease, and subsequently 

the most appropriate approach to maintain homocysteine balance as a means to reduce 

disease risk.  It will also be of utmost importance to identify specific populations that are 

most sensitive to homocysteine imbalance, based on known polymorphisms or 

physiological states that have been shown to impact homocysteine metabolism. 
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Figure Legends 

 

 Fig. 1.  Hepatic folate, methyl group, and homocysteine metabolism. 

Abbreviations of metabolites and enzymes are: betaine-homocysteine S-methyltransferase 

(BHMT); cystathionine β-synthase (CBS); cystathionine γ-lyase (CGL); dimethylglycine 

(DMG); methionine synthase (MS); methyltransferases (MTs); 5,10-methylene-THF 

reductase (MTHFR); S-adenosylhomocysteine (SAH); S-adenosylmethionine (SAM); 

serine hydroxymethyltransferase (SHMT); tetrahydrofolate (THF); and methyl acceptor 

(X).  For this review, important SAM-dependent methyltransferases include: glycine N-

methyltransferase (GNMT); guanidinoacetate N-methyltransferase (GAMT); and 

phosphatidylethanolamine N-methyltransferase (PEMT).  These three methyltransferases 

respectively catalyze the conversion of glycine to sarcosine, guanidinoacetate to creatine, 

and phosphatidylethanolamine (PE) to phosphatidylcholine (PC).  In addition to folate, 

note that this series of interrelated pathways are dependent on a number of other B-

vitamins, including riboflavin (B2), vitamin B6, and vitamin B12. 
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